Viscosity of the aqueous liquid/vapor interfacial region: 2D electrochemical measurements with a piperidine nitroxy radical probe.

نویسندگان

  • Deng Guo Wu
  • Andrew D Malec
  • Martin Head-Gordon
  • Marcin Majda
چکیده

Surface partitioning of 2,2,6,6-tetramethyl-1-piperidynyloxy radical (Tempo) to the air/water interface follows a Langmuir isotherm. The partition constant was obtained by the surface tension measurements in the concentration range of 1.0 x 10(-4)-2.4 x 10(-3) M yielding K = 640 +/- 99 M(-1). The lateral mobility of Tempo at the air/water interface was measured electrochemically in the surface concentration range of 2.0 x 10(-11)-1.4 x 10(-10) mol/cm2, corresponding to ca. 7.3-50% full monolayer coverage. The measurements employed cyclic voltammetry with line microelectrodes touching the air/water interface. The Tempo lateral diffusion constant of (1.5 +/- 0.7) x 10(-4) cm2/s is independent of surface concentration below 4.0 x 10(-11) mol/cm2. The extent of Tempo water interactions was assessed by the electronic structure calculations. These calculations showed that, at most, two water molecules can hydrogen bond with the oxygen atom of the nitroxyl group of Tempo, and that a single water molecule forms a hydrogen bond that is ca. 30% stronger than the H2O-H2O hydrogen bond. These calculations led to a postulate that Tempo diffuses along the interface largely unimmersed, and that it is coupled to the interfacial water via hydrogen bonding with H2O. In view of this postulate, the viscosity of the aqueous liquid/vapor interfacial region obtained by interpreting the Tempo diffusion constant in the low concentration region is as much as 4 times smaller than that of bulk liquid water.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Piperidine adsorption on hydrated alpha-alumina (0001) surface studied by vibrational sum frequency generation spectroscopy.

The adsorption of piperidine vapor on the hydrated alumina (alpha-Al2O3, corundum) (0001) surface was investigated using vibrational broad bandwidth and scanning sum frequency generation (SFG) spectroscopy. The interfacial vibrational signature in the C-H stretching region of piperidine at the alumina (0001) surface is shown to be a sensitive spectroscopic probe revealing the adsorption mechani...

متن کامل

Gas-liquid Relative Permeability Estimation in 2D Porous Media by Lattice Boltzmann Method: Low Viscosity Ratio 2D LBM Relative Permeability

This work is a primary achievement in studying the CO2 and N2–oil systems. To predict gas-liquid relative permeability curves, a Shan-Chen type multicomponent multiphase lattice Boltzmann model for two-phase flow through 2D porous media is developed. Periodic and bounce back boundary conditions are applied to the model with the Guo scheme for the external body force (i.e.,...

متن کامل

Effect of high-viscosity interphases on drainage between hydrophilic surfaces.

Drainage of water from the region between an advancing probe tip and a flat sample is reconsidered under the assumption that the tip and sample surfaces are both coated by a thin water "interphase" (of width approximately a few nanometers) whose viscosity is much higher than that of the bulk liquid. A formula derived by solving the Navier-Stokes equations allows one to extract an interphase vis...

متن کامل

Electrochemical studies of the lateral diffusion of TEMPO in the aqueous liquid/vapor interfacial region.

Surface partitioning and lateral mobility of TEMPO (2,2,6,6-tetramethyl-1-piperidynyloxy free radical) in the aqueous liquid/gas interfacial region were investigated electrochemically with 100 nm wide, 1.0 cm long microband electrodes positioned at the air/water interface. For redox active amphiphiles such as TEMPO, the electrochemical current is the sum of the surface and solution components r...

متن کامل

Ion spatial distributions at the liquid-vapor interface of aqueous potassium fluoride solutions.

X-Ray photoemission spectroscopy operating under ambient pressure conditions is used to probe ion distributions throughout the interfacial region of a free-flowing aqueous liquid micro-jet of 6 M potassium fluoride. Varying the energy of the ejected photoelectrons by carrying out experiments as a function of X-ray wavelength measures the composition of the aqueous-vapor interfacial region at va...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Chemical Society

دوره 127 12  شماره 

صفحات  -

تاریخ انتشار 2005